The Chromium Paradox

The Chromium Paradox 

It is an undeniably paradoxical fact that the metal chromium exhibits two extremely contradictory biochemical characteristics. Chromium, in a hexavalent chemical form, is a highly toxic human respiratory carcinogen and a key chemical component for all industrial chromium processing such as stainless-steel production.  

The trivalent form of chromium, on the other hand, is an essential trace nutrient that plays an active role in the human sugar, and lipid metabolism (Anderson et al, 2010). The nutrient chromium seems to bind with short chain amino acid monomers (oligopeptidesto form chromodulin, a low-molecular-weight chromium-binding complex that binds to the human insulin and enhances the insulin-dependent sugar metabolism (Eckhert et al, 2014). 

The effect of chromium on the sugar metabolism obviously has triggered numerous chromium centric research studies and chromium was classified an essential nutrient due to its metabolic role in the insulin mechanism in 2001 (FNB, 2001).  

Chromium Dietary Sources 

Dietary sources of chromium include whole grains, nuts, fruits, vegetables, meat, dairy products, and meat, but in micro quantities ranging from 0.1 mcg to 7.5 mcg per serving (Nielsen et al, 2012). Whole wheat, green beans, peas, peanuts, apple, orange, grapes, banana, lettuce, tomato, carrot, ham, beef, turkey, chicken, egg, cheese, milk are excellent dietary sources of chromium (Swaroop et al, 2019).  

The human breast milk contains on average 0.25 mcg/litre chromium, though higher concentration (10.8 mcg/litre) of the same has been reported in European populace (EFSA, 2014). 

Although no conclusive symptoms of chromium deficiency have been corroborated yet, chromium is routinely appended to total parenteral nutrition (TPN) infusions given to nutritionally compromised patients to provide at least 10–15 mcg chromium per day (Vincent et al, 2019).  

Chromium Health Benefits 

The health benefits of chromium have been documented for various health conditions including polycystic ovarian disease, diabetes, impaired glucose toleranceand dyslipidaemia. 


Polycystic ovarian disease is a widespread endocrinal disease that afflicts young women in the reproductive phase of their life. Also known as PCOD or PCOS, the disease is marked by infertility, excessive testosterone in females (hyperandrogenism) and dyslipidaemia.  Those afflicted with PCOD are under higher risk of type 2 diabetes and cardiovascular maladies (Goldrat and Delbaere, 2018).  

The typical insulin resistance in PCOD patients has been the focus of research investigations related to chromium supplementation in this cohort (Piotrowska et al, 2019). Clinical trials that dispensed a daily dose of 200 -1000 mcg chromium as chromium picolinate over a period of eight to twenty-four weeks (Fazelian et al, 2017) in a cohort of PCOS patients have documented a significant reduction of fasting insulin levels by 0.33 milli-IU/mL, free testosterone levels by 0.52 pg/mL and body mass index (BMI) by 2.37 kg/m2.  

Various randomized trials have established an appreciably low measure of insulin resistance upon chromium supplementation (as chromium picolinate) with a significant improvement in beta-cell function (Tang et al, 2018 and Heshmati et al, 2018). 

Impaired Glucose Tolerance and Diabetes 

Clinical studies on chromium supplementation for type 2 diabetes in a cohort of one hundred and eighty adults with type 2 diabetes aged between thirty-five and sixty-five administered with chromium picolinate twice a day for sixteen weeks have established that those on 1,000 mcg/day chromium supplementation had exhibited lower fasting serum glucose concentrations by the 8th week with a mean fasting serum glucose levels at 7.1 mmol/L (128 mg/dL) as compared to the placebo cohort at 8.8 mmol/L (159 mg/dL).  

The HbA1c (hemoglobin A1clevels have also been found to drop down appreciably in the study with chromium supplementation (Anderson et al, 1997).  

Various other trials have also substantiated that chromium picolinate supplementation improves glucose and insulin metabolism in patients with type 1 diabetes, type 2 diabetes, gestational, and steroid-induced diabetes (Cefalu et al, 2004). Studies have also established a link between reduced chromium concentrations and higher blood cholesterol levels (Gunton et al, 2005).  

Drug Interactions 

Chromium has been shown to reduce levothyroxine absorption and may act as an additive with metformin and antidiabetic drugs causing hypoglycemia. Thus, it is good to consult your physician before taking chromium supplements. 


  1. Anderson RA, Cefalu WT. Chromium. In: Coates PM, Betz JM, Blackman MR, et al., eds. Encyclopedia of Dietary Supplements 2nd ed. New York, NY Informa Healthcare; 2010. 

  1. Eckhert CD. Trace Elements. In: A. Catharine Ross BC, Robert J. Cousins, Katherine L. Tucker, Thomas R. Ziegler, ed. Modern Nutrition in Health and Disease. 11th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2014:248-51. 

  1. Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Washington, DC: National Academy Press; 2001.  

  1. Vincent JB, Brown S. Introduction: A history of chromium studies (1955-2007). In: Vincent JB, ed. The Nutritional Biochemistry of Chromium (III). Cambridge, MA Elsevier; 2019:1-58. 

  1. Swaroop A, Bagchi M, Preuss HG, Zafra-Stone S, Ahmad T, Bagchi D. Benefits of chromium (III) complexes in animal and human health. In: Vincent JB, ed. The Nutritional Biochemistry of Chromium (III). Cambridge, MA: Elsevier; 2019:251-78. 

  1. Nielsen FH. Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements. In: John W. Erdman Jr. IAM, Steven H. Zeisel, ed. Present Knowledge in Nutrition. 10th ed: Wiley-Blackwell; 2012:586-607. 

  1. European Food Safety Authority NDA Panel. Scientific Opinion on Dietary Reference Values for chromium. EFSA Journal 2014;12(10):3845. 

  1. Goldrat O, Delbaere A. PCOS: update and diagnostic approach. Clin Biochem 2018; 62:24-31. 

  1. Fazelian S, Rouhani MH, Bank SS, Amani R. Chromium supplementation and polycystic ovary syndrome: A systematic review and meta-analysis. J Trace Elem Med Biol 2017; 42:92-6.  

  1. Piotrowska A, Pilch W, Czerwinska-Ledwig O, Zuziak R, Siwek A, Wolak M, et al. The possibilities of using chromium salts as an agent supporting treatment of polycystic ovary syndrome. Biol Trace Elem Res 2019; 192:91-7.  

  1. Tang XL, Sun Z, Gong L. Chromium supplementation in women with polycystic ovary syndrome: Systematic review and meta-analysis. J Obstet Gynaecol Res 2018;44:134-43.  

  1. Heshmati J, Omani-Samani R, Vesali S, Maroufizadeh S, Rezaeinejad M, Razavi M, et al. The effects of supplementation with chromium on insulin resistance indices in women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized clinical trials. Horm Metab Res 2018; 50:193-200.  

  1. Maleki V, Izadi A, Farsad-Naeimi A, Alizadeh M. Chromium supplementation does not improve weight loss or metabolic and hormonal variables in patients with polycystic ovary syndrome: A systematic review. Nutr Res 2018; 56:1-10. 

  1. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004 Nov;27(11):2741-51. doi: 10.2337/diacare.27.11.2741. Erratum in: Diabetes Care. 2013 Sep;36(9):2872. PMID: 15505017. 

  1. Gunton JE, Cheung NW, Hitchman R, Hams G, O’Sullivan C, Foster-Powell K, et al. Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled, double-blind trial of supplementation in subjects with impaired glucose tolerance. Diabetes Care 2005; 28:712-3. 

Add Comment

0 Items
gtag('js', new Date()); gtag('config', 'UA-145168326-1');